Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD.

نویسندگان

  • Tom Vanden Berghe
  • Geert van Loo
  • Xavier Saelens
  • Maria Van Gurp
  • Greet Brouckaert
  • Michael Kalai
  • Wim Declercq
  • Peter Vandenabeele
چکیده

Two general pathways for cell death have been defined, apoptosis and necrosis. Previous studies in Jurkat cells have demonstrated that the Fas-associated death domain (FADD) is required for Fas-mediated signaling to apoptosis and necrosis. Here we developed L929rTA cell lines that allow Tet-on inducible expression and FK506-binding protein (FKBP)-mediated dimerization of FADD, FADD-death effector domain (FADD-DED), or FADD-death domain (FADD-DD). We show that expression and dimerization of FADD leads to necrosis. However, pretreatment of the cells with the Hsp90 inhibitor geldanamycin, which leads to proteasome-mediated degradation of receptor interacting protein 1 (RIP1), reverts FKBP-FADD-induced necrosis to apoptosis. Expression and dimerization of FADD-DD mediates necrotic cell death. We found that FADD-DD is able to bind RIP1, another protein necessary for Fas-mediated necrosis. Expression and dimerization of FADD-DED initiates apoptosis. Remarkably, in the presence of caspase inhibitors, FADD-DED mediates necrotic cell death. Coimmunoprecipitation studies revealed that FADD-DED in the absence procaspase-8 C/A is also capable of recruiting RIP1. However, when procaspase-8 C/A and RIP1 are expressed simultaneously, FADD-DED preferentially recruits procaspase-8 C/A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necrotic Death Pathway in FAS Receptor Signaling

A caspase 8-deficient subline (JB6) of human Jurkat cells can be killed by the oligomerization of Fas-associated protein with death domain (FADD). This cell death process is not accompanied by caspase activation, but by necrotic morphological changes. Here, we show that the death effector domain of FADD is responsible for the FADD-mediated necrotic pathway. This process was accompanied by a los...

متن کامل

Dominant-negative FADD inhibits TNFR60-, Fas/Apo1-  and TRAIL-R/Apo2-mediated cell death but not gene induction

Fas/Apo1 and other cytotoxic receptors of the tumor necrosis factor receptor (TNFR) family contain a cytoplasmic death domain (DD) [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] that activates the apoptotic process by interacting with the DD-containing adaptor proteins TNFR-associated DD protein (TRADD) [12] [13] and Fas-associated DD protein (FADD/MORT1) [14] [15], leading to the activation of ...

متن کامل

Fas-associated factor 1, FAF1, is a member of Fas death-inducing signaling complex.

FAF1 has been introduced as a Fas-binding protein. However, the function of FAF1 in apoptotic execution is not established. Based on the fact that FAF1 is a Fas-binding protein, we asked if FAF1 interacted with other members of the Fas-death-inducing signaling complex (Fas-DISC) such as Fas-associated death domain protein (FADD) and caspase-8. FAF1 could interact with caspase-8 and FADD in vivo...

متن کامل

The roles of FADD in extrinsic apoptosis and necroptosis.

Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect wi...

متن کامل

Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis

The Fas cell surface receptor induces apoptosis upon receptor oligomerization. We have identified a novel signaling protein, termed Daxx, that binds specifically to the Fas death domain. Overexpression of Daxx enhances Fas-mediated apoptosis and activates the Jun N-terminal kinase (JNK) pathway. A C-terminal portion of Daxx interacts with the Fas death domain, while a different region activates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 9  شماره 

صفحات  -

تاریخ انتشار 2004